
Starting from Scratch
with Munki

Hi, I'm Rick!
 @refreshingapathy

 @rickheil

Blog/Slides: rickheil.com/psu2019

What We'll Cover This Morning

» munki servers and repos

» anatomy of a munki client

» packages and pkginfos

» catalogs vs manifests

» how does munki know what to install?

» practical examples

» add-on tools

» Q&A

But first...

What Munki ISN'T

» an MDM

» a remote control /remote access tool

» reporting software

» that hard, once you get to know it

What Munki IS

» a software management tool suite for macOS

» versatile and powerful

» well documented

» community-driven

What is a munki server?

What is a munki repo?

A quick word on security

What is a munki client?

» Managed Software Center (MSC)

» managedsoftwareupdate

» launchd jobs (agents and daemons)

» (plus various libraries and helper tools in /usr/local/munki)

managedsoftwareupdate

» located in /usr/local/munki

» the "mission control" behind almost all munki functionality

» runs as root via launchd, and requires sudo when run in a
terminal

Calling managedsoftwareupdate in
terminal

1. sudo /usr/local/munki/managedsoftwareupdate --auto

2. sudo /usr/local/munki/managedsoftwareupdate --checkonly

3.

⚠

 sudo /usr/local/munki/managedsoftwareupdate --
installonly

⚠

V E R B O S E

sudo /usr/local/munki/managedsoftwareupdate -v

V E R B O S E
sudo /usr/local/munki/managedsoftwareupdate -vv

V E R B O S E
sudo /usr/local/munki/managedsoftwareupdate -vvv

V E R B O S E
sudo /usr/local/munki/managedsoftwareupdate -vvvv

V E R B O S E
sudo /usr/local/munki/managedsoftwareupdate -vvvvv

Managed Software Center

launchd jobs

» Launch Agents

» glue between userland and the daemons

» Launch Daemons

» scheduler

» restart, logout, and install helpers

managedsoftwareupdate check (LD)

<dict>
 <key>Label</key>
 <string>com.googlecode.munki.managedsoftwareupdate-check</string>
 <key>ProgramArguments</key>
 <array>
 <string>/usr/local/munki/supervisor</string>
 <string>--delayrandom</string>
 <string>3600</string>
 <string>--timeout</string>
 <string>43200</string>
 <string>--</string>
 <string>/usr/local/munki/managedsoftwareupdate</string>
 <string>--auto</string>
 </array>
 <key>StartCalendarInterval</key>
 <dict>
 <key>Minute</key>
 <integer>10</integer>
 </dict>
</dict>

Installing the munki apps

1. Download from https://github.com/munki/munki

2. Install to your machines and reboot

3. There's no step 3

Configuring Clients

Use a configuration profile or sudo defaults write /Library/
Preferences/ManagedInstalls

Important keys to set:
- SoftwareRepoURL
- ClientIdentifier (more on this later)

Other cool keys:
- AdditionalHttpHeaders (basic auth)
- InstallAppleSoftwareUpdates (boolean)
- LoggingLevel (integer, default of 1, higher = more logs)
- DaysBetweenNotifications

Packages and pkginfos

Important pkginfo keys

» version

» name vs display_name

» catalogs

» unattended install and uninstall

More important pkginfo keys

» description

» preinstall and postinstall script

» update_for and requires

» forceinstallafter_date

And two very special keys: installs and
receipts

» receipts works off the pkgutil receipts database

» check this by running pkgutil --pkg-info PKG-ID-HERE

» you can get the pkg id with pkgutil --packages and
filtering the output

» all pkgs leave receipts, but not all receipts are useful

And two very special keys: installs and
receipts

» installs tell munki to look at things that are file-based to
know if something is installed at a specific version

» version strings (CFBundleShortVersionString) from
Info.plist

» file checksum / hash (MD5)

» file presence

Two options to make a pkginfo:

/usr/local/munki/makepkginfo

/usr/local/munki/munkiimport

munkiimport usage: easy as pie

The first time you set up munkiimport, you will need to run the
following command:
munkiimport --configure

After that, simply run munkiimport /path/to/item.pkg
(or .dmg, .mobileconfig, etc)

Types of things munki can install

1. standard macOS pkg

2. copy from DMG

3. configuration profile

4. nopkg

5. on demand

6. several Adobe-specific types

!

7. macOS update metadata

8. startosinstall

macOS pkgs + copy from DMG

» just a normal package or drag-and-drop style DMG

» munkiimport highly recommended to import

» watch for pre/post scripts in pkgs that expect to be run as
users

configuration profile

» any non-UAMDM/DEP gated preferences

» create by hand, with Profile Creator (#profilecreator on Slack),
or Profile Manager (macOS Server.app)

» munkiimport highly recommended to import

» use the pkginfo "version" key to keep new versions straight
(don't try to update the version key in the profile!)

nopkg
!

» nopkg makes my life better and can make yours better too

» uses an installcheck script to see if it needs to be installed

» uses the postinstall_script function of munki to run whatever
script you need

» makepkginfo is best for this - use the --nopkg flag with --
installcheck_script and --postinstall_script values

A quick word about repo organization

1. Pick an organization scheme

2. Write it down

3. USE IT

Manifests vs Catalogs

Catalogs

» runs through all your pkginfo files and combines them into
"master files"

» created with the makecatalogs command

» create as many as make sense for your environment - I
recommend separate test and production

» clients only read catalogs, not the pkginfo files

» not seeing a change? Make sure you ran makecatalogs!

Cool catalog tricks

» munki clients evaluate catalogs in the order they are placed in
the manifest

» use a second "testing" catalog to deploy new or experimental
software to a test group

» separate multiple companies using the same repo (an MSP
model)

Manifests

» plist files

» instruct clients or groups of clients what to do with which
software, and which catalogs to use

» clients get manifest files based on the file name

managed_installs

» forces installation of the item

» useful for "required" software

managed_uninstalls

» forces uninstallation of the item

» useful for "NOPE" software

managed_updates

» maintains software only if it was already installed

» useful for security updates when your users have local admin
rights

» can reduce clutter of installed items versus setting everything
as managed_installs

optional_installs

» allows the user to choose whether or not they want the
software installed

» allows the user to uninstall the software if they want to

» comparable to the App Store or JAMF's Self Service
experiences in some ways

included_manifests

» allows you to "nest" manifests together

» useful if you have a specific group of software that needs to be
installed together

Who am I?

Munki tries to load http(s)://SoftwareRepoURL/manifests/
MANIFESTNAMEHERE

Where MANIFESTNAMEHERE is...
- ClientIdentifier if the preference is set.
- if the pref is not set, the following in this order are tried:
 1. fully qualified hostname (ricks-mac.mycompany.com)
 2. short hostname (ricks-mac)
 3. serial number
 4. site_default

!!
 MANIFEST OPINION ALERT

!!

» one-manifest-per-machine

» group manifests

» remember: nesting is your friend

How does munki know what to install?

Munki checks for these attributes, in this order, to evaluate
whether or not to install something.
1. OnDemand (always installs)
2. installcheck_script
3. config profiles
4. installs items ("installs array")
5. receipts

Anatomy of a (Background) Munki Run

1. Launch Daemon trigger supervisor with randomized delay

2. Supervisor calls managedsoftwareupdate

Anatomy of a (Background) Munki Run

1. managedsoftwareupdate then:

» reaches out to find its manifests

» parses each item in each manifest to see whether or not it
needs to be installed

» creates a list of any installs/uninstalls, downloads any
needed resources

» performs any unattended installs or uninstalls

» follows notification logic for any updates that need to be
"attended"

How about a practical
example?

The Problem

» Firefox is your main supported browser, so it should be
installed by default.

» You want anyone running Google Chrome to still get updates

» The developers want the open source Chromium to test with,
but you don't want anyone else using it

Pre-Munki Solution

» ARD

» Asking people nicely

» Walk around to each machine

» Wailing and gnashing of teeth

Munki-Driven Solution

1. Import the software to your repo

2. Add software to the proper catalog(s)

3. Add to manifest(s) as needed.

Importing + Add to Catalogs
munkiimport GoogleChrome.dmg
munkiimport Firefox.dmg
munkiimport Chromium.app

(add to catalogs during munkiimport or by editing by hand)

Don't forget to makecatalogs!

Accounting and Sales Manifest

<dict>
 <key>catalogs</key>
 <array>
 <string>production</string>
 </array>
 <key>managed_installs</key>
 <array>
 <string>Firefox</string>
 </array>
 <key>managed_uninstalls</key>
 <array>
 <string>Chromium</string>
 </array>
 <key>managed_updates</key>
 <array>
 <string>Google Chrome</string>
 </array>
 <key>optional_installs</key>
 <array>
 <string></string>
 </array>
</dict>

Developer Manifest

<dict>
 <key>catalogs</key>
 <array>
 <string>production</string>
 </array>
 <key>managed_installs</key>
 <array>
 <string>Firefox</string>
 <string>Chromium</string>
 </array>
 <key>managed_uninstalls</key>
 </array>
 <key>managed_updates</key>
 <array>
 <string>Google Chrome</string>
 </array>
 <key>optional_installs</key>
 <array>
 <string></string>
 </array>
</dict>

Going further: autopkg

» software that automates checking for updates

» can automatically import into munki

» helps you stay on top of updates and keep things secure

https://github.com/autopkg

Tidying up: Repoclean

» script written by Greg

» allows you to delete old versions of software that aren't used
anymore

» can be helpful to spot cruft and clean things up

https://github.com/munki/munki/blob/master/code/client/
repoclean

More Advanced Tools

» MunkiReport-PHP - uses scripts on each munki run to gather
info and display on a web app

» putting your repo in git / source control

» using cloud storage for your repo

» continuous integration

» application usage

» customizing MSC look and feel

Getting Help

For general help and how-to questions:

» Munki Wiki (https://github.com/munki/munki/wiki)

» MacAdmins Slack, #munki (sign up at macadmins.org)

» Join the Munki-Discuss mailing list (Google Groups)

For code questions or reporting bugs:

» MacAdmins Slack, #munki (sign up at macadmins.org)

» Post a Github issue (github.com/munki/munki)

Q&A

THANK YOU!

