Starting from Scratch
with Munki



Hi, ['m Rick!

¥ @refreshingapathy
0 @rickhell

Blog/Slides: rickheil.com/psu2019



What We'll Cover This Morning

> munki servers and repos

> anatomy of a munki client

> packages and pkginfos

> catalogs vs manifests

> how does munki know what to install?
>> practical examples

> add-on tools

> Q&A



But first. ..



What Munki ISN'T

> an MDM
>> a remote control /remote access tool
> reporting software

> that hard, once you get to know it



What Munki IS

> a software management tool suite for macOS
> versatile and powerful
> well documented

> community—-driven



What is a munki servere



“The munki server is just a
web server!”
~Greg




What is a munki repo¢



Favorites
[£) Recents

M Documents
A Applications
@) AirDrop

) Desktop
0 Downloads

Locations

¢ iCloud Drive
@ Remote Disc
@ Network

Tags
® Gray
@ Purple

[l munki_repo

=X ED =

| Q Search

catalogs

icons

manifests

pkgs

pkgsinfo




A quick word on security



What is a munki client?

> Managed Software Center (MSC)
> managedsoftwareupdate
> launchd jobs (agents and daemons)

> (plus various libraries and helper tools in /usr/local/munki)



managedsoftwareupdate

> located 1n /usr/local/munki
> the "mission control" behind almost all munki functionality

>> runs as root via launchd, and requires sudo when run in a
terminal



Calling managedsoftwareupdate in
terminal

1. sudo /usr/local/munki/managedsoftwareupdate --auto

2. sudo /usr/local/munki/managedsoftwareupdate —--checkonly

3. ! sudo /usr/local/munki/managedsoftwareupdate —-
installonly !



sudo /usr/local/ munkiﬁggﬁ;gedsoftwareupdate -V



VERBOSE
sudo /usr/local/munkl/managedsoftwareupdate ~-VV




VERBOSE

sudo /usr/local/munki/managedsoftwareupdate -vvv



VERBOSE

sudo /usr/local/munki/managedsoftwareupdate -vvvv



VERBOSEL

sudo /usr/local/munki/managedsoftwareupdate -vvvvv



Managed Software Center



launchd jobs

> Launch Agents

> glue between userland and the daemons
> Launch Daemons

> scheduler

> restart, logout, and install helpers



managedsoftwareupdate check (LD)

<dict>
<key>Label</key>
<string>com.googlecode.munki.managedsoftwareupdate-check</string>
<key>ProgramArguments</key>
<array>
<string>/usxr/local/munki/supexrvisor</string>
<string>--delayrandom</string>
<string>3600</string>
<string>--timeout</string>
<string>43200</string>
<string>--</string>
<string>/usr/local/munki/managedsoftwareupdate</string>
<string>--auto</string>
</array>
<key>StartCalendarInterval</key>
<dict>
<key>Minute</key>
<integer>10</integer>
</dict>
</dict>



Installing the munki apps

1. Download from https://github.com/munki/munki
2. Install to your machines and reboot

3. There's no step 3



Configuring Clients

Use a configuration profile or sudo defaults write /Library/

Preferences/ManagedInstalls

Important keys to set:
- SoftwareRepoURL
- Clientldentifier (more on this later)

Other cool keys:

- AdditionalHttpHeaders (basic auth)

- InstallAppleSoftwareUpdates (boolean)

- Logginglevel (integer, default of 1, higher = more logs)
- DaysBetweenNotifications




Packages and pkginfos



Important pkginfo keys

>> Version
> name vs display_name
>> catalogs

> unattended install and uninstall



More important pkginfo keys

> description
>> preinstall and postinstall script
> update_for and requires

>> forceinstallafter date



And two very special keys: installs and
receipts

> receipts works off the pkgutil receipts database
> check this by running pkgutil --pkg-info PKG-ID-HERE

> you can get the pkg 1d with pkgutil --packages and
filtering the output

>> all pkgs leave receipts, but not all receipts are useful



And two very special keys: installs and

receipts

> 1nstalls tell munki to |

ook att

know if something is i

nings that are file-based to

nstallec

|at a specific version

> version strings (CFBundleShortVersionString) from

Info.plist

>> file checksum / hash (MD5)

> file presence



Two options to make a pkginfo:

/fustr/local/munki/makepkginfo

fusr/local/munki/munkiimport



munkiimport usage: easy as pie

The first time you set up munkiimport, you will need to run the
following command:

munkiimport --configure

After that, simply run munkiimport /path/to/item.pkg
(or .dmg, .mobileconfig, etc)



- -

.

]

4 \




Types of things munki can install

1. standard macOS pkg
. copy from DMG
configuration profile
. nopkg
on demand
. several Adobe-specific types

. macOS update metadata

O N O VTR W N

. Sstartosinstall



macOS pkgs + copy from DMG

> just a normal package or drag-and-drop style DMG

> munkiimport highly recommended to import

>> watch for pre/post scripts in pkgs that expect to be run as
uSers



configuration profile

> any non-UAMDM/DEP gated preferences

> create by hand, with Profile Creator (#profilecreator on Slack),
or Profile Manager (macOS Server.app)

> munkiimport highly recommended to import

> use the pkginfo "version" key to keep new versions straight
(don't try to update the version key in the profile!)



nopkg ¥

>>

>>

>>

>>

nopkg makes my life better and can make yours better too
uses an installcheck script to see if it needs to be installed

uses the postinstall_script function of munki to run whatever
script you need

makepkginfo is best for this - use the --nopkg flag with - -
installcheck_script and --postinstall_script values




A quick word about repo organization

1. Pick an organization scheme
2. Write it down

3. USEIT



| Q search

Remote Disc
Tags

® Gray

@ Purple

® Green

) Yellow

@® Red

) All Tags...

| NN BBEdit
(<[> ] g =fe = #v a0 O
Favorites client_resources > apps > 8x8
icons > itutils > Absolute GmbH
& Recents manifests > munkitools > Adium
B Documents pkgs > office_templates > Adobe
./.\: Frarlleiiane pkgsinfo > os > Adobe_CC
’ % README.md printers > AgileBits
@) Airbrop tests > profiles > Apple
5 Desktop AutoDMG
Axure Software Solutions
0 Downloads Balsamiq Studios
Locations BareBones Software
Bohemian Coding
¢ iCloud Drive brandworkz

Cisco
Citrix
Clients and Profits
Code4?2
Crypt
Cyberduck
DaisyDisk
displaylink
Docker
Dropbox
Element TwentySix
Evernote
Extensis
Fitbit
Flip4Mac
fournova
GIMP
Giphy
Github
Google
GPG Tools

Bl BBEdit >

vV V V V vV V vV V vV VvV vV vV V vV V V V VvV V V V vV vV V V vV VvV V VvV VvV VvV VvV VvVYy

BBEdit-12.6.2.d
BBEdit-12.6.3.d
BBEdit-12.6.4.d
BBEdit-12.6.5.d




Manifests vs Catalogs



Catalogs

> runs through all your pkginfo files and combines them into
"master files"

> created with the makecatalogs command

> Create as many as make sense for your environment - [
recommend separate test and production

> clients only read catalogs, not the pkginfo files

> not seeing a change< Make sure you ran makecatalogs!



Cool catalog tricks

> munki clients evaluate catalogs in the order they are placed in
the manifest

> use a second "testing" catalog to deploy new or experimental
software to a test group

> separate multiple companies using the same repo (an MSP
model)



Manifests

> plist files

> 1nstruct clients or groups of clients what to do with which
software, and which catalogs to use

> clients get manifest files based on the file name



managed_installs

> forces installation of the item

> useful for "required" software

managed__uninstalls

> forces uninstallation of the item

>> useful for "NOPE" software



managed_updates

> maintains software only if it was already installed

> useful for security updates when your users have local admin
rights

> can reduce clutter of installed items versus setting everything
as managed_ installs



optional_installs

>> allows the user to choose whether or not they want the
software installed

> allows the user to uninstall the software if they want to

> comparable to the App Store or JAMF's Self Service
experiences in some ways



included manifests

> allows you to "nest" manifests together

> useful if you have a specific group of software that needs to be
installed together



Who am I¢

Munki tries to load http(s)://SoftwareRepoURL/manifests/
MANIFESTNAMEHERE

Where MANIFESTNAMEHERE 1s...

- ClientIdentifier if the preference is set.

- 1f the pref is not set, the following in this order are tried:
1. fully qualified hostname (ricks—-mac.mycompany.com)
2. short hostname (ricks-mac)

3. serial number

4. Site__detault




<@ & MANIFEST OPINION ALERT & &

>> one-manifest-per—-machine
> group manifests

> remember: nesting is your friend



How does munki know what to install¢

Munki checks for these attributes, in this order, to evaluate
whether or not to install something.

1. OnDemand (always installs)

2. Installcheck_script

3. config profiles

4. installs items ("installs array")

5. receipts




Anatomy of a (Background) Munki Run

1. Launch Daemon trigger supervisor with randomized delay

2. Supervisor calls managedsoftwareupdate



Anatomy of a (Background) Munki Run

1. managedsoftwareupdate then:
> reaches out to find its manifests

>> parses each item in each manifest to see whether or not it
needs to be installed

>> creates a list of any installs/uninstalls, downloads any
needed resources

> performs any unattended installs or uninstalls

> follows notification logic for any updates that need to be
"attended"



How about a practical
example<



The Problem

> Firefox is your main supported browser, so it should be
installed by default.

> You want anyone running Google Chrome to still get updates

> The developers want the open source Chromium to test with,
but you don't want anyone else using it



Pre-Munki Solution

>>

>>

>>

>>

ARD
Asking people nicely
Walk around to each machine

Wailing and gnashing of teeth



Munki-Driven Solution

1. Import the software to your repo
2. Add software to the proper catalog(s)
3. Add to manifest(s) as needed.



Importing + Add to Catalogs

munkiimpoxt GoogleChrome.dmg
munkiimport Firefox.dmg

munkiimpoxt Chxromium.app

(add to catalogs during munkiimport or by editing by hand)

Don't forget to makecatalogs!



Accounting and Sales Manifest

<dict>
<key>catalogs</key>
<array>
<string>production</string>
</array>
<key>managed_installs</key>
<array>
<string>Firefox</string>
</array>
<key>managed_uninstalls</key>
<array>
<string>Chromium</string>
</array>
<key>managed_updates</key>
<array>
<string>Google Chrome</string>
</array>
<key>optional_installs</key>
<array>
<string></string>
</array>
</dict>



Developer Manifest

<dict>
<key>catalogs</key>
<array>
<string>production</string>
<[/array>
<key>managed_installs</key>
<array>
<string>Firefox</string>
<string>Chromium</string>
</array>
<key>managed_uninstalls</key>
</array>
<key>managed_updates</key>
<array>
<string>Google Chrome</string>
</array>
<key>optional_installs</key>
<array>
<string></string>
</array>
</dict>



Going further: autopkg

> software that automates checking for updates
>> can automatically import into munki

> helps you stay on top of updates and keep things secure

https://github.com/autopkg



Tidying up: Repoclean

> Script written by Greg

> allows you to delete old versions of software that aren't used
anymore

>> can be helpful to spot cruft and clean things up

https://github.com/munki/munki/blob/master/code/client/
repoclean



More Advanced Tools

> MunkiReport-PHP - uses scripts on each munki run to gather
info and display on a web app

>> putting your repo 1n git / source control
>> using cloud storage for your repo

> continuous integration

> application usage

> customizing MSC look and feel



Getting Help



For general help and how-to questions:

> Munki Wiki (https://github.com/munki/munki/wiki)

> MacAdmins Slack, #munki (sign up at macadmins.org)

> Join the Munki-Discuss mailing list (Google Groups)

For code questions or reporting bugs:

> MacAdmins Slack, #munki (sign up at macadmins.org)

> Post a Github issue (github.com/munki/munki)



QA



THANK YOU!



