
Advanced Munki
Infrastructure

Rick Heil - Senior IT Manager @ Myelin

@refrshingapathy

@refreshingapathy

github.com/rickheil

Slides, resources, and links are available now at
rickheil.com/munkipsu2017

http://rickheil.com/munkipsu2017

We will cover:
• My Prime Directive: Why Cloud Munki?

• The Power of Middleware

• Tales from Production: Ways to use Cloud Services with
Munki

• Teamwork in Cloud-Based Munki

• Using CI to Automate Your Cloud

• Questions / Comments / Tomato Throwing

THE PRIME
DIRECTIVE

No, not this
directive

How do we manage Macs in five diverse offices?
Five offices and remote workers challenged our

existing Munki model.

“The munki server is just a
web server!”

 ~Greg

Scaling Approaches

• Host the munki server out of one office

• Host a munki server in each office

• Host the munki server on a cloud server somewhere
(Rackspace, Amazon EC2, physical hardware in one of the
company colos)

• Something else?

Then I found out
about middleware.

With middleware, the munki
server doesn’t have to be

just a web server anymore.

?

Adding security to S3

• Lock down access to IAM accounts

• Calculate a signature for the requests with a pair of keys

• Signature is added to “Authorization” header

• If the signature is valid, S3 allows the request

 Options: {'logging_function': <function display_debug2
at 0x11172b9b0>, 'ignore_system_proxy': None,
'additional_headers': {'User-Agent':
u'managedsoftwareupdate/3.0.2.3347 Darwin/16.6.0'},
'file': u'/Library/Managed Installs/catalogs/
production.download', 'cache_data':

 Options: {'logging_function': <function display_debug2 at
0x103dd49b0>, 'ignore_system_proxy': None,
'additional_headers': {'x-amz-content-sha256':
'e3b0c44298fc1c142jfjdqkd358996fb92427ae41e4649b934
ca495991b7852b855', 'x-amz-date': '20170701T212047Z',
'Authorization': 'AWS4-HMAC-SHA256
Credential=AKIAJHJGSDKFJDRSK5QQ/20170701/us-
east-1/s3/aws4_request, SignedHeaders=host;x-amz-
date,
Signature=a584c61729318348ajfkaw39jfsdfjedk07db0d325
c98906103c86e386d9a769ec5', 'User-Agent':
u'managedsoftwareupdate/3.0.2.3347 Darwin/16.6.0'}, 'file':
u'/Library/Managed Installs/catalogs/production.download',

With middleware, the munki
server doesn’t have to be

just a web server anymore.

Middleware Options

• Amazon S3 (Wade)

• Amazon CloudFront (Aaron Burchfield)

• Google Cloud Storage (Wade)

Tales from Production
or: tell me how I can use this!

A “Normal” Munki Server

Mac Endpoint Munki Server

File from server disk

GET Request for file

1: Use Squirrel

• open source server written in
Go by Victor (@groob)

• built in HTTPS via LetsEncrypt

• can serve files from a local disk,
S3, or GCS

• no special configuration
needed on clients beyond basic
auth

Mac Endpoint Squirrel Cloud Storage

File from cloud storage

GET Request for file

using HTTPS, basic auth
GET request for fileSigned as needed

File from cloud storage

Squirrel

Pros

• incredibly easy to set up

• only need one cloud account

• keys are never on clients

• basic auth + HTTPS = good
security out of the box

Cons

• each request fetches the file

• this adds up meaning you will
pay more bandwidth charges

• large updates could saturate
your outbound network
connection, causing
slowdowns.

2: Amazon S3 (Direct)

• uses middleware so machines
talk directly to S3

• built-in HTTPS certificate from
Amazon

• leverage Amazon’s reliability
and scale

Setup on the S3 Side

• create your bucket, disable public access ACLs

• create a read-only IAM user for the clients

• create a read/write IAM user for yourself

Installing S3 Middleware

• create a pkg to drop the script
at /usr/local/munki/
middleware_s3.py

• create a profile with the IAM
credentials and any other
middleware settings needed

Middleware
Munki on a  

Mac 
Endpoint

S3 Bucket

Signed request with headers

GET Request for file
Passed for  

signing
GET request for file

File from cloud storage

Amazon S3 (Direct)

Pros

• no local infrastructure / server
needed at all

• straight forward to set up and
troubleshoot

• Amazon buckets come with
HTTPS by default

• S3 is generally pretty reachable

Cons

• IAM keys are on the client

• you’re still paying for each file
retrieval

• large updates could saturate
your network connection,
causing slowdowns.

3: Hybrid S3 (Cached)

• uses a combination of S3
middleware and on-prem
reverse proxies

• HTTPS on local proxies and
direct to S3

• allows granular cache control

• super-fast LAN downloads

But why local proxies?

• significant bandwidth savings

• significant cost savings

• wire speed delivery of updates to LAN clients

What’s in a proxy?
• Small VM - 1 vCPU, 1-2GB RAM

• hosted locally in each office

• run your favorite flavor of OS with nginx installed

• ngx_aws_auth module

• cronjob to re-generate keys (remember, signing keys expire!)

• enough disk space to hold your munki repo once (plus a
little bit)

Middleware
Munki

S3 Bucket

nginx local 
caching 
proxy

Hybrid S3 (Cached)
Pros

• FAST updates on LAN

• saves you on both bandwidth
and S3 transaction costs

• All HTTPS all the time

• Caching proxies keep you
going while S3 is down

• Caching proxies are super
tunable to your needs

Cons

• IAM keys are on the client

• Requires local infrastructure
(small server or VM)

• Requires DNS changes

• More complexity means more
things to troubleshoot

Other fun proxy tricks
• Due to historical reasons, our old munki URL had /repo/ in

the path. We can redirect this easily with the proxies.

• We can efficiently serve specific static content (e.g.
pictures that are in descriptions) easily with the same
system

• Set up alerts through our log shipping system if a client
requests the site_default manifest

• Use the stub status module to track various metrics for
making pretty graphs

Back to the prime directive:
How do we manage Macs in five diverse offices?

Git: The Good

• all changes (commits) tied to a specific person - great for
audit-able logs

• follows the “infrastructure as code” push we are making on
all fronts

• provides a centralized repository but allows independent
local work

Git: The Bad

• LFS doesn’t have object expiration (yet)

• Team members need to have an understanding of git

• Branching strategy wars

Tips on getting started…

• Put your catalog files in .gitignore and generate them when
you deploy

• Use Git LFS (or Git Fat, if you like) for DMG, pkg, and
mpkg. Let regular git track everything else

• Use “git lfs prune” on your local copy to keep things under
control

• Agree on a branching strategy ahead of time

What is CI?

• Stands for “Continuous Integration”

• Uses a “runner” to accomplish tasks

• Can run scripts directly on shell (bash on Linux/macOS,
cmd on Windows) or using a docker container

Why use CI with Munki?

• Allows for continuous deployment - whatever is on git’s
master branch is a mirror of production repo

• No need to generate and monitor tons credentials for
production - provides a single path to deploy

• Repeatable build environments (using docker containers)

• Logged builds and tests for troubleshooting

• Run scheduled pipelines

CI Pitfalls

• Will do exactly what you tell it to do

• Can be slow to work with large repos

• Another moving part in the process

• Temptation to script literally everything in your life

munkilinter

• Compares file hashes to ensure that LFS did everything
correctly. We don’t want corrupt pkgs going to S3.

• Checks that pretty things are correct in pkginfo files

• Checks plist syntax of all manifests

• Code available on my site for you to browse and modify

autopkg_tools.py

• Released by Facebook CPE team on Github

• Allows for custom “create_task” implementation (in my
case, a Trello card)

• Added our branching model and Gitlab elements

• This all took me an afternoon. Thank you Nick and team!

CI Tips

• Use Gitlab’s variables function to keep secrets out of the
repo

• Use proper error handling

• Only hard-enforce the standards you care deeply about

• Protect production!

Go to Mac Justice’s
session in 207 next if you

want more Gitlab!

I don’t want to use CI
for munki!

Okay, use file repo plugins instead!

What does this effort
get us?

Questions?
Resources: https://rickheil./com/munkipsu2017

Feedback: https://bit.ly/psumac2017-163

https://rickheil./com/munkipsu2017
https://bit.ly/psumac2017-163

